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Abstract
A theory with experimental verifications has been developed to investigate
the nonlinear behavior of comb drive actuators under applied external
electrical potential and Joule heating effects. The nonlinear behavior
originates from coupled effects of the beam structure under applied
electrical potential with electrostatically induced tensile stress and thermally
induced compressive stress. Detailed analyses have been conducted to study
the nonlinear spring force, residual and thermal stresses, as well as the
dynamic behaviors of the actuator. Experimental and numerical simulation
results based on an energy model have been proposed to analyze the linear
and cubic stiffness as well as frequency changes of the comb drive actuators.
Theories and models developed on the comb drive actuator in this work
could be extended to explain nonlinearity and dynamic behaviors of more
complicated microsystems encountering other force-induced nonlinear
sources.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The invention of the comb drive actuator [1] inspired the
development of many sensors and actuators [2–6], as comb-
shape actuators are easy to make and provide good linearity
under small deflections. Most devices or systems based on
comb drive actuators use the linear model to calculate the
stiffness of the suspension spring. For instance, a linear
spring model of folded spring design [1] has been assumed
to describe the dynamic behaviors of comb drive actuators.
However, transducers based on electrostatic resonators, such
as microgyroscopes or microaccelerometers, may require
post-fabrication frequency tuning to improve their sensitivity
and performance and nonlinear behavior can be introduced.
Various frequency tuning schemes have been demonstrated by
actively introducing external electrical forces or permanently
altering the geometry of the comb actuators. For example, the
frequency of the microactuators has been tuned by applying a
control voltage to triangular electrostatic comb arrays for about

3% reduction in frequency [7], by adding material deposition
to the mass for about 1.2% reduction in frequency [8] or by
thermally expanding microstructures for up to 25% reduction
in frequency [9, 10]. Other frequency-tuning methods can
cause frequency reduction due to externally applied attractive
force [7], mass increase [8] or thermal expansion [9, 10] of the
spring structure. Using electrostatic fringing-field actuators
[11], researchers have tuned the effective linear and cubic
stiffness of microstructures. However this electrostatic tuning
method generally requires high tuning voltages of up to 35 V. In
these and other situations where external forces/mechanisms
are used to modify the performances of comb-shape actuators,
nonlinear behavior could emerge and should be modeled and
formulated. This paper presents a theory with experimental
demonstrations to illustrate nonlinear behaviors of the comb-
shape actuators under externally induced forces, including
externally applied electrical potential and Joule heating
effects.
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Figure 1. Comb drive actuator using tension and compression
effects of springs (beams): the dc bias voltage Vb is used to provide
the tension in the spring beam, while the control voltage, Vc, causes
the compression of the spring by Joule heating.
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Figure 2. Basic concept showing stiffness increase and decrease:
(a) the root mean square voltage, Vrms, of the comb drive generates
tension in a beam to increase its stiffness, (b) the heating voltage Vh

causes thermal expansion and compressive stress to reduce the
stiffness. A combination of these provides a unique way to either
increase or decrease the stiffness of a mechanical structure.

2. Theory

Figure 1 shows a schematic of the comb drive microactuator
utilizing tension and compression effects of springs to alter its
resonant frequency. The movable structure suspended by the
spring beams is actuated in the lateral direction by applying
a dc bias voltage Vb and ac driving voltage Va. The dc bias
voltage Vb and a Joule heating voltage Vc are used to tune the
linear and cubic stiffness of the spring to generate tension or
compression effects.

Figure 2 shows the principle of stiffness change of the
spring beam when dc bias voltage Vb and the heating voltage
Vh are applied. The dc bias voltage Vb generates electrostatic
tensile force to cause deflection of the beam as illustrated
in figure 2(a). The heating voltage causes the beam to
extend as the beam stiffness decreases due to compressive
force as illustrated in figure 2(b). In the following analyses,
the nonlinear stiffness behavior of the spring beam is first
described and the dynamic behavior of the comb resonators is
afterward derived.

2.1. Behavior of the springs

A straight beam in figure 3(a) with Young’s modulus E,
moment of inertia I, length l, width b and the initial tension
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Figure 3. Deflection of a beam subjected to an applied force.
(a) Configuration before applying a force, (b) beam subjected to an
applied force.
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Figure 4. Force with respect to deflection of the spring beam. The
force is the sum of the linear and cubic forces.

T is subjected to an applied force Fa in the upward direction
with deflection, δ, as illustrated in figure 3(b). Figure 4 depicts
the force that was generated by the beam when the beam is
deflected by δ. The force, Fa, can be modeled as the sum of the
linear force term and the cubic force term due to the geometric
nonlinearity, the initial stress and other effects. Because the
beam is symmetric about the axis x in figure 3, the quadratic
and forth forces disappear and the linear and cubic forces are
included in the spring force formulation. In order to obtain the
force under a given deflection, we combine theoretical solution
for the linear force and numerical solution for the cubic force
term and assume the following relationship: Fa = klδ + kcδ

3.
We use the dimensional analysis [14] to obtain a

simple force–deflection equation from the nonlinear curves of
figure 4 as follows:

f1(Fa, δ, EI, l, b, T ) = 0. (1)

Four dimensionless parameters that govern the beam deflection
can be obtained as follows [14]:

l2Fa

EI
= f2

(
δ

l
,
l2T

EI
,
b

l

)
(2)

where l2Fa

EI
, δ

b
, l2T

EI
and b

l
are the dimensionless parameters.

By assuming that the tension T in the beam is constant and that
the beam deflection is small, we can obtain the linear force Fa

at the deflection δ as [13]:

Fa = klδ (3)
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where

kl

k
= 1

12

λ3 sinh λ

λ sinh λ + 2(1 − cosh λ)
(4)

k = 12EI

l3
(5)

λ = l

√
T

EI
. (6)

If a compressive force P instead of the tension T is applied in
equation (4), the buckling load P of the spring beam can be
obtained as P = π2EI/l2 from kl = 0 or sinh(l

√−P/EI) =
i sin(l

√
P/EI) = 0. After using Taylor’s series expansion to

equation (4), a simple linear stiffness is obtained for small λ:

kl

k
= 1 +

1

10
λ2 − 1

8400
λ4 + high order terms

∼= 1 +
1

10
λ2 = 1 +

1

10

l2T

EI
. (7)

It is noted in equation (7) that the linear stiffness is proportional
to the initial tension T when l2T/EI is small. The linear stiffness
kl represents the linear force while the cubic force can be
obtained from a numerical simulation. After combining the
linear force of equation (3) with the cubic force, the applied
force at the deflection δ can be obtained as follows:

Fa = klδ + kcδ
3 (8)

where

kl = kl0 + kl1σi (9)

kl0 = k = 12EI

l3
(10)

kl1 = k
1

10

l2A

EI
= 6

5

A

l
(11)

σi = T

A
. (12)

σ i is the initial stress that consists of the residual stress and
the thermal stress that may be generated by the Joule heating.
Subtracting the linear force of the equation (8) from the spring
beam force of figure 4 and using a curve fitting technique gives
the cubic stiffness reflecting the cubic force,

kc = kc0 + kc1σi + kc2σ
2
i (13)

where kc0, kc1 and kc2 denote coefficients to determine the cubic
stiffness kc at a given initial stress σ i. A procedure to obtaining
the coefficients for the cubic stiffness will be detailed in
section 3.

2.2. Compressive stress generation in the spring

The spring beam of figure 1 also acts as a heater for adjusting
thermal stress. Figure 5 shows the energy balance of an
infinitesimal beam element taken from the spring beam. In
order to analyze temperature distribution of the beam, the one-
dimensional energy balance equation is used [21]:

Q̇ dx − kthA
∂θ

∂x
= hp dx(θ − θ∞)

− kthA
∂θ

∂x
+

∂

∂x

(
−kthA

∂θ

∂x

)
dx (14)

dx b

t
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Figure 5. Energy balance of an infinitesimal beam element.

where

Q̇ = V 2
h

Rl
. (15)

Equation (14) is rewritten as follows:

kthA
d2θ

dx2
− hp (θ − θ∞) + Q̇ = 0. (16)

Before solving the above equation, we examine the second
term reflecting the convection heat transfer. With a
characteristic temperature θmax and the characteristic length
l, a dimensionless number �1 can be defined to compare the
conduction heat transfer (the first term of equation (16)) with
convection heat transfer (the second term of equation (16)):

�1 = [hp(θ − θ∞)][
kthA

d2θ
dx2

] = hpθmax

kthA
θmax

l2

= hpl2

kthA
. (17)

The dimensionless parameter �1 is calculated as 0.0063
when we use dimensions and values of typical silicon
micromachined comb drive actuators: l ∼ 100 × 10−6 m,
p ∼ 10 × 10−6 m, h ∼ 5 W m−2 ◦C−1, kth ∼ 20 W m−1 ◦C−1,
A ∼ 4 × 10−12 m2. �1 � 1 implies that the convection heat
transfer is very small compared to the heat conduction transfer,
so that the convection heat transfer could be ignored. Dropping
the second term of equation (16), we rewrite the differential
equation as follows:

d2θ

dx2
+

Q̇

kthA
= 0. (18)

With the boundary conditions θ = θ∞ at x = 0 and x = l, the
above equation yields the temperature distribution equation
[21]

θ − θ∞ = Q̇

2kthA

(
l2

2
−

(
x − l

2

)2
)

. (19)

The temperature distribution is quadratic and the maximum

temperature (θ − θ∞)max is Q̇l2

4kthA
at x = l/2. One can

obtain the thermally induced strain from the integration of
equation (19) on x:

�l

l
= 1

l
α

∫ l

0

Q̇

2kthA

(
l2

2
−

(
x − l

2

)2
)

dx = αQ̇l2

12kthA
.

(20)

Using the above strain, the initial tension and stress are
expressed as follows:

T = σrA − EA
�l

l
= σrA − EαQ̇l2

12kth
(21)
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Figure 6. Forces acting on the movable structure.

σi = T

A
= σr − EαQ̇l2

12kthA
(22)

where σ r is the residual stress at Q̇ = 0. It is noted from
equations (15), (21) and (22) that the initial tension and stress
decreases with increasing heating voltage. When the tension
T due to the heating reaches the buckling load of zero linear
stiffness (equation (4)), the beam is buckled. The vibration of
microactuators with buckled beam can extend travel range as
shown in the following sections.

2.3. Dynamic behaviors of the movable structure

Figure 6 shows the forces on the movable structures when it
moves to the right-hand side. The electrostatic force Fe of the
comb is a driving force, damping force Fdamping is a drag force
and spring force Fspring is a restoring force. The equation of
motion is obtained from Newton’s law,

m
d2δ

dt2
+ c

dδ

dt
+ kδ = Fe (23)

where

k = ka + kbδ
2 (24)

ka = Nskl (25)

kb = Nskc (26)

Fe = n
εts

g
(Vb + Va cos ωt)2 (27)

c = cpβhs

(
1 +

sinh 2βhs + sin 2βhs

cosh 2βhs − cos 2βhs

+
Af

Ap

sinh 2βg + sin 2βg

cosh 2βg − cos 2βg

)
(28)

cp = µAp

hs
(29)

β =
( ω

2ν

)1/2
(30)

c denotes the damping coefficient from the Stokes’ damping
model [15, 22] and cp is the Couette damping coefficient
[22] due to the Couette shear flow [23] between the movable
structure and the substrate.

Equations (23)–(30) include severe nonlinearities such as
the cubic stiffness, the initial stress effect, the bias voltage
change, the geometric nonlinearity, the angular frequency and
the damping coefficient as a function of the angular frequency,
so that we cannot use simple equations and solutions such
as the Duffing’s equation [16, 17]. To solve the preceding
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Figure 7. Electrical connection to heat the beams and to avoid the
stiction of the movable structure to the substrate.

nonlinear equation of equation (23), the Park method [18] is
used that is one of the stable methods for solving nonlinear
second differential equations. Applying the Park method to
the equation (23) gives the following equation:

m̄δt+�t = F̄ e,t+�t (31)

m̄ = 100

36�t2
m +

10

6�t
c + k (32)

F̄ e,t+�t = Fe,t+�t +
15

6�t
mδ̇t − 1

�t
mδ̇t−�t +

1

6�t
mδ̇t−2�t

+

(
150

36�t2
m +

15

6�t
c

)
δt −

(
10

6�t2
m +

1

�t
c

)
δt−�t

+

(
10

36�t2
m +

1

6�t
c

)
δt−2�t (33)

where subscript t is time, subscript �t is time step, δ̇ denotes
the velocity (dδ/dt). The Wilson theta method [18] is used to
obtain the first two steps of displacement (δ) and velocity (δ̇)
at t − �t and t − 2�t. With the initial displacement and the
velocity at t = 0 and the first two steps, the displacements of
the next time steps are successively calculated.

3. Design and fabrication

When the Joule heating voltage is applied as shown in figure 1,
the movable structure has electric potential that generates an
electrostatic force in the direction normal to the substrate.
This nonlinear electrostatic force pushes the movable structure
downward and may result in the collapse of the movable
structure into the substrate [27]. In order to avoid structure
collapse, the voltage of the lower electrode is set equal to
that of the movable structure. Figure 7 depicts the electrical
wiring to heat the beams and to avoid the collapse of the
lower electrode. In figure 7, the beam resistance is R and
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Figure 8. Force with respect to deflection. The nonlinear beam
deflection is obtained from a simulation using commercial software,
ABACUS, with l = 150 µm, b = 2 µm, ts (thickness) = 2 µm
and E = 110 GPa.

the resistance for force balance is Rb. The voltage Vh of the
movable structure is obtained as

Vh = 1
/(

1
R

+ 1
R

)
1
/(

1
R

+ 1
R

)
+ 1

/(
1
R

+ 1
R

)Vc = Vc

2
. (34)

Similarly, the voltage of the lower electrode for balance has the
same voltage. It is noted that the voltage Vh of equation (34)
is also used to generate Joule heating (equation (15)) in a beam
to induce the thermal compressive stress. Table 2 summarizes
the design parameters of the comb drive actuator that can adjust
the linear and cubic stiffness as well as the resonant frequency.

The linear and cubic stiffness of the spring beam shown
in table 3 is obtained by using the beam data in table 2 and
ABACUS [19]—a finite element simulation software. The
numerical simulation using ABACUS gives the force Fa at
deflection δ as shown in figure 8. The force increases with
deflection but decreases when compressive stress is increased
(i.e. negative initial stress). When the initial compressive stress
increases, the linear stiffness and the force in a portion of
deflections become negative. For the initial stress of −64 MPa
in figure 8, the force is negative in the range of 0–4 µm and
the stiffness is negative in the range of 0–2.2 µm. Subtracting
the linear force (klδ of equation (8)) from the simulated force
of figure 8 gives the cubic force that is a function of the initial
stress, σ i. From a polynomial curve fitting of the cubic force,
the cubic stiffness coefficients of equation (13) are obtained.
Table 3 summaries the coefficients of the linear and cubic
stiffness and table 4 shows the initial stress, the linear and
cubic stiffness as functions of Vc. The cubic stiffness of table 2
is in agreement with that from figure 8 within 3% discrepancy
in the range of −64 MPa � σ i � 64 MPa. When the heating
control voltage Vc increases from 0 to 2 V in table 4, the initial
stress in each beam decreases from the residual stress.

Using the computational scheme of equation (31) and the
design parameters in tables 2 and 3, we numerically simulate
the nonlinear dynamics of the comb drive actuator under ac
driving voltage Va = 10 V with dc bias voltage Vb = 40 V.
Figures 9 and 10 show the four possible responses. In figure 9,
the movable structure with zero heating voltage at time t = 0
is driven by the electrostatic force of the comb (equation (27)).
Without heating, the displacement of the movable structure
increases with time and the amplitude reaches a saturation
level. When the heating voltage Vc = 2 V is applied to the
beam, three possible modes are shown in figures 10(a), (b)

Table 1. List of parameters.

b Beam width
c Damping coefficient
cp Couette damping coefficient
f Frequency
g Gap between the movable and stationary fingers
h Convection heat-transfer coefficient of the air
hs Gap between the movable structure and the substrate
k Stiffness of a beam
ka Linear stiffness of the four spring beams
kb Cubic stiffness of the four spring beams
kc Cubic stiffness
kc0, kc1 and kc2 Coefficients of the cubic stiffness
keff Effective stiffness
kl Linear stiffness
kl0 and kl1 Coefficients of the linear stiffness
kth Conductivity of the beam
l Beam length
m Mass
n Number of fingers of the movable structure for the

electrostatic force
p Perimeter defined as 2(b + ts)
t Time
ts Structure thickness
x, y, z Coordinates
A Cross-sectional area of the beam
Af Area of fingers for the damping
Ap Plate area
E Potential energy or Young’s modulus
Eb Barrier energy
Eδ Maximum energy stored in the beam
EI Bending modulus of the beam
Fa Applied force
Fe Electrostatic force
Ns Number of the spring beams
Q̇ Generated heat per unit beam length
R Resistance of the beam
Rb Resistance for force balance
T Initial tension
Va ac driving voltage
Vc Voltage across the beams
Vd dc bias voltage
Vh Heating voltage across the beam
α Coefficient of thermal expansion
δ Displacement
δ̇ Velocity (dδ/dt)
ε Permitivity of air
µ Dynamic viscosity
ν Kinematic viscosity
θ Temperature
θ∞ Atmospheric temperature
ρ Density
σ i Initial stress
σ r Residual stress
ω Angular frequency of the ac voltage
�l Thermal expansion of the beam length
�t Time step
�1 Dimensionless number to compare the conduction

heat transfer with convection heat transfer

and (c). Under the resonant frequency of 16 kHz, the movable
structure in figure 10(a) swings a few times in the positive and
negative regions and thereafter its motion is confined in the
positive region. The second case is observed in figure 10(b).
When the driving voltage is applied at f = 16.5 kHz, the
movable structure vibrates a few times in the positive and
negative regions and then its motion is confined in the negative
region. At f = 17 kHz, the movable structure continuously
moves in both the directions even though its motion is confined

561



K B Lee et al

0 1 2 3 4 5
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
D

is
pl

ac
em

en
t 

δ 
[µ

m
]

t[ms]

0.0 0.1 0.2 0.3 0.4 0.5
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

D
is

pl
ac

em
en

t δ
 [µ

m
]

t [ms]

Figure 9. Simulated displacement with respect to time under the
heating voltage Vc = 0 V and actuating frequency f = 21.25 kHz: an
ac driving voltage of 10 V with dc bias voltage Vb = 40 V is applied
to the comb in figure 1 to actuate the movable structure.

Table 2. Design parameters of a comb drive actuator.

Movable structure
Mass of movable structure, m 6.36 × 10−11 kg
Area of movable structure, Am 1.37 × 10−8 m2

Gap between the movable 2 × 10−6 m
structure and the substrate, h

Spring beam
Number of spring beams, Ns 4
Thickness, ts 2 × 10−6 m
Beam width, b 2 × 10−6 m
Length of the beam, l 150 × 10−6 m
Residual stress, σ r

a −1.04 × 107 Pa
Stiffness of one beam, k0 0.52 N m−1

Resistance of one beam, Rb 1130 �

Comb
Finger number of a comb, n 18
Gap between the movable 2 × 10−6 m
and stationary fingers, g

Poly silicon material propertiesb

Density, ρ 2330 kg m−3

Young’s modulus, Ea 1.1 × 1011 Pa
Coefficient of thermal expansion, α 2.33 × 10−6 ◦C−1

Thermal conductivity, kth 20 W m−1 oC−1

Based on:
a Experiment of a test structure.
b Source book data except for Young’s modulus [12].

in the positive or negative region a few times. It is noted from
the three modes of figure 10 that if the movable structure
swings in both the regions, its vibration amplitude becomes
about two times that in one-side regions.

Tunable microactuators 2 µm in thickness have been
fabricated by the standard surface micromachining process
[20]. Figure 11 shows a SEM photograph of one released
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Figure 10. Simulated displacement with respect to time under the
heating voltage Vc = 2 V and different actuating frequencies—ac
driving voltage of 10 V with dc bias voltage Vb = 40 V. The movable
structure can vibrate in three modes: (a) in the positive region, (b) in
the negative region and (c) in the positive and negative regions.

Table 3. Linear and cubic stiffness coefficients of one spring beam.

kl
a klo 0.5172 N m−1

kl1 3.20 × 10−8 N m−1 Pa−1

kc
b kco 9.20 × 1010 N m−3

kc1 −2.14 × 102 N m−3 Pa−1

kc2 −6.17 × 10−6 N m−3 Pa−2

a Calculated by using theoretical
stiffness (equations (10) and (11)) and
the spring beam data of table 2.
b From curve fitting for the range of 0 �
δ � 4 × 10−6 m and –64 × 106 Pa �
σ i � 64 × 106 Pa. The data used for
curve fitting are from ABACUS
simulation (figure 8) with the spring
beam data of table 2.

microresonator where the mass of the movable structure is
6.36 × 10−11 kg and the spring beam is 2 µm in width and
150 µm in length. Figure 12 is a close-up view of figure 11.
The meander-shape resister design for the purpose of
electrostatic force balance has been implemented to balance
the voltage supply to keep the movable structure from
electrostatically sticking to the lower plate.
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Driving & bias comb
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Spring & heater
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for force balance

Figure 11. SEM photograph of the fabricated tunable comb drive
actuator made from the standard surface-micromachining process
with a total size of 360 µm × 415 µm.

Spring & heater

Resister
for balance

Figure 12. Close-up view of figure 11 showing combs and spring of
the microactuator. A pair of meander-shape resisters is designed to
balance the voltage supply to keep the movable structure from
electrostatically sticking to the lower plate.

Table 4. Linear and cubic stiffness coefficients with respect to the
Joule heating control voltage.

Vc (V) σ i
a (Pa) ka

b (N m−1) kb
b (N m−3)

0 −1.044 × 106 0.732 3.74 × 1011

0.4 −1.19 × 107 0.551 3.75 × 1011

0.8 −1.61 × 107 0.006 67 3.75 × 1011

1.2 −2.32 × 107 −0.901 3.75 × 1011

1.6 −3.31 × 107 −2.17 3.69 × 1011

2 −4.59 × 107 −3.80 3.55 × 1011

a Based on initial stiffness (equations (22)) and data
of table 2.
b Calculated from equations (25) and (26). Vd of
40 V and Va of 10 V are applied. Vc/2 is applied
across each beam for heating.

4. Results

The tunable microactuator was tested under an optical
microscope in atmospheric pressure with peak-to-peak ac
driving voltage, Va of 10 V, and dc bias voltage, Vb, ranging
from 20 V to 40 V. During the experiment, the resonant
frequencies, defined as the frequencies achieving maximum
amplitude, are recorded. The Joule heating voltage varies in
the range of 0–2 V. Figure 13 shows three sets of responses of
the microactuator under different sets of applied voltages. It
clearly shows that resonant frequency increases when the bias
voltage Vb increases and decreases when the heating voltage
Vc increases. The first set of data (circles) is response of a
combination of Vb = 40 V and Vc = 0 V. The hard spring
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Figure 13. Experimental responses of the actuator with respect to
frequency under different bias and heating voltages: bias voltage Vb

increases the resonant frequency and the heating voltage Vh lowers
it. The right two curves are responses for the hard spring and the left
curve is a response for the apparent soft spring. a–l are points of
frequency jumping for frequency sweeping.
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Figure 14. Measured and simulated resonant frequency from the
actuator by varying heating control voltages while the bias voltage is
fixed at 40 V: the experimental resonant frequency changes from
22.2 kHz to 16.2 kHz, resulting in the 27% reduction in the resonant
frequency.

effect shown in equation (8) is observed due to the geometric
nonlinearity of the spring beam under dc bias. The arrows from
a–b and c–d indicate jump-down and jump-up phenomena,
respectively. In order to examine the effect of the bias voltage
on the response, the bias voltage is increased from 20 V to 40 V
as shown in the second set of data (diamonds). The increase
of electrostatic force results in larger resonant frequency, and
higher hard spring effects due to the geometric nonlinearity of
the spring. The third set of data (triangles) shows responses
when the heating voltage is increased from 0 V to 2 V under the
dc bias voltage of 40 V. The data show an apparent soft spring
effect that is not from the negative mechanical cubic stiffness.
As shown in table 4, the cubic stiffness kb of the spring beams
remains at an almost positive constant value while the Joule
heating control voltage increases. The arrows of i–j and k–l
are jump-up and jump-down phenomena when sweeping up
down input frequencies, respectively.

Figures 14–17 summarize more experimental data.
Figure 14 compares measured and simulated resonant
frequency from the actuator by varying heating control
voltages while the bias voltage is fixed at 40 V. The simulation
result uses equation (31) and the data of tables 2 and 3.
When the heating voltage increases, resonant frequency of
the actuator decreases to a minimum value and increases
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Figure 15. Effective stiffness derived from the experimental results
of figure 14: stiffness is reduced by 47% from the initial stiffness of
1.24 N m−1, while the heating voltage is changed from 0 V to 2 V.
The stiffness increases after 2 V.
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Figure 16. Resonant frequency measured from the microactuator by
varying the bias voltages while the heating voltage is fixed at 0 V.
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Figure 17. Effective stiffness derived from the experimental results
of figure 16: stiffness is increased by 50% from the initial effective
stiffness of 0.90 N m−1, while the bias voltage is changed from 20 V
to 60 V.

afterward. The discrepancy between the experimental and
simulated frequencies might come from uncertain material
properties used in the simulation. Experimentally, resonant
frequency changes from 22.2 kHz to 16.2 kHz, which is 27%
reduction. Figure 15 is effective stiffness data from figure 14
by using keff = m(2πf )2. The effective stiffness is reduced
by 47% from the initial stiffness of 1.24 N m−1. It is noted
that the effective stiffness decreases linearly with the square of
heating voltage in the range of V 2

c = 0–3.6 V 2. Figures 16 and
17 are the resonant frequency and the corresponding effective
stiffness when the bias voltage Vb varies from 20 V to 40 V
under Vc = 0 V. The resonant frequency has 24.2% increase

and the effective stiffness is increased by 50% from the initial
value of 0.89 N m−1. Using figures 15 and 17, a simple
expression of the effective stiffness reflecting the nonlinearity
on the vibration amplitude and the resonant frequency can be
obtained as follows:

keff = 0.3488 + 3.351 × 10−2Vb − 2.787

× 10−4V 2
b − 0.1176V 2

c . (35)

The above expression is an approximate equation for the
effective stiffness and is valid in the range of 20 V � Vb �
60 V and 0 � Vc � 1.8 V.

5. Discussion

We developed a theory for the nonlinear behavior of comb
drive actuators under externally induced electrostatic force
and Joule heating effects. Several nonlinear sources affect
the overall behavior: geometric nonlinearity of the spring,
initial stress generated due to residual stress and thermally
induced stress. An apparent soft spring phenomenon
as well as Duffing’s hard spring effect [16, 17] have
been observed in figure 13. With increased bias voltage
(equation (27)), the tension and stiffness of the spring increase
and resonant frequency increases as shown in figure 16. The
heating voltage increases to cause more Joule heating and
the stiffness of the spring decreases to cause the reduction
of resonant frequency as shown in figure 14. However,
previous theories such as Duffing’s equation did not provide
good explanations on the decrease/increase of the resonant
frequency in figure 14 or negative spring constant as shown in
figure 13.

Figure 3 shows the spring is symmetric about the x-
axis such that one may assume the spring force curve is
symmetric about the origin as shown in figure 18(a). The
thermal expansion of the beam gives the compressive stress
and lowers the spring force and could generate negative spring
constant in some regions as shown. The potential energy
(stored energy) [26] corresponds to the spring force and
figure 18(b) depicts the potential energy of the spring with
respect to the displacement and the heating voltage. Under
zero heating voltage, the curve of the potential energy is
U shaped. The energy curve changes to the form of W
shaped under non-zero heating voltage. As shown in figure
18(b), the curve of the W shape potential energy well is
wider than that of the U shape potential energy well. The
local minimum positions on a potential energy well can be
defined as positions that satisfy dE/dδ = 0 and d2E/d2δ >

0. The U shaped curve has only one stable position at δ = 0
while the W shaped curve has two stable positions at either the
right or left regions. At δ = 0, the W shape curve is not in a
stable position because the curvature is negative at the point.

Consider a mass vibrating in three different types of
potential energy conditions as shown in figures 19(a), (b) and
(c). E, δ, Eδ and Eb denote potential energy, displacement,
maximum energy stored in the beam and barrier energy,
respectively. Figure 19(a) illustrates that an actuating force
such as electrostatic force may actuate the mass in the positive
and negative regions. Figures 19(b) and (c) illustrate that the
energy curve and barrier are adjusted by changing the heating
voltages. In the case of Eb < Eδ in figure 19(b) (small heating
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Figure 18. Spring force and corresponding potential energy while
the heating control voltage Vc is changed. When Vc increases, the
stiffness decreases and becomes negative in some regions. The
shape of the potential energy E changes from U to W shape. The
stable displacements are displacements that satisfy dE/dδ = 0 and
d2E/d2δ > 0. (a) Spring force of a beam, (b) potential energy.
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Figure 19. Explanation of the frequency shift and negative cubic
stiffness: the comb drive actuator can work in the three different
modes: (a) no energy barrier at the center of the energy, (b) energy
barrier less than the potential energy and (c) energy barrier larger
than the potential energy.

voltage), the mass could go over the energy barrier and go from
one well to another. As shown in figures 18(b) and 19(b),
the wider well shape provides longer vibration amplitude

and results in the lower frequency. This lower frequency
phenomenon due to wider well is observed in figure 13.
Moreover, the mass travels over the region of the negative
linear stiffness formed in the central region of the well. This
soft spring effect due to the apparent negative cubic stiffness
is observed in figures 13 and 14. When we increase the
heating control voltage beyond 2 V, the energy battier is higher
than the stored energy and the mass (the movable structure)
cannot go over the energy barrier and its motion is confined in
one well. The effect of the energy barrier on the response
is observed in the numerical simulation (figure 10) at the
heating control voltage of Vc = 2 V and at the three different
frequencies of f = 16 kHz, 16.5 kHz and 17 kHz. From
figures 10(a) and (b), the movable structure starts from δ =
0, swings in the positive and negative regions a few times
and then the motion of the mass is confined in the positive side
well (figure 10(a), the right well figure 19(c)) or in the negative
side well (figure 10(b), the left well of figure 19(c)). When
the potential energy is higher than the barrier energy, the mass
vibrates in the both side wells as shown in figures 10(c) and
19(b). Using this energy potential well model, we can clearly
explain the frequency decrease and increase phenomenon
when the heating controls voltage increases. When the heating
control voltage increases until Vc = 2 V in figure 14, the energy
well becomes wider and the potential energy well is divided
into two small wells while the resonant frequency lowers. As
a result, this energy well division effect of the microstructure
can be used to extend travel distance of the movable structure,
adjust the resonant frequency and even control the effective
linear and apparent cubic stiffness over the range of negative
and positive values. This energy analysis could be extended
to other energy sources such as electromagnetic force for the
control and operation of resonating structures.

6. Conclusions

Nonlinear behavior of the comb drive actuator under externally
applied electrical actuation and Joule heating effects has been
investigated analytically and experimentally. The nonlinear
behavior comes from spring, electrostatic force and thermally
induced stress. The linear and cubic spring constant was
assumed and obtained by using a combination of theory and
numerical simulation under tensile and compressive stresses.
A dynamic model was built with numerical simulation to
understand the nonlinear behavior of the movable structure.
The dc bias voltage results in the hard spring effects. The
resonant frequency decreases under Joule heating effects and
the apparent negative cubic spring constant (soft spring effect)
was observed. In order to explain the apparent negative cubic
stiffness effect and the corresponding frequency change, we
proposed the potential energy well model of the comb drive
actuator where the well becomes wider and is divided into
two small wells when the heating control voltage increases.
From a series of experiments and numerical simulation using
the developed dynamic model, the potential energy model
well explained the nonlinearities of the comb drive actuator
mentioned above. These investigations could lead the way to
explaining nonlinearity and dynamic behaviors of complicated
microsystems based on comb actuators.
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