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An clectro-thermal-clastic model for characterizing thermal
buckling behavior of micromachined beams has been
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Omax  Maximum deflection angle of the beam
Lame¢ constant

u Lameé constant
v Poisson’s ratio
Tjj Stress components

¢ Sil]71 (iin(/(;/Z))

1. Introduction

Buckling phenomena of micro beams have
found several applications in microsystems. For
example, buckling criteria of micro beams have
been used to predict the magnitude of residual
stress in thin films [1,2]. Different bistable or
multistable mechanisms of buckled beams have
been applied for memory elements [3], logic
clements [4], pumping mechanism [5], and a
snapping mucroactuator [6]. It is noted that all
of the above applications have used the on/oft
mechanisms of the buckling effects.

This paper presents electro, thermal and clastic
modeling  of the continuous  buckling
mechanism  for suspended micromachined
beams. These micro beams are made of heavily
phosphorus-doped polysilicon by a standard
surface micromachining process. When an input
current is applied, self-heating of the beams
causes high compressive stresses and the beam
buckles. The buckling behavior 1s found to be
continuous and controllable. This continuous,
controllable mechanism may be used as microac-
tuators in microsystems. The clectro-thermal
responses of suspended micro beams had been
established previously |7]. This paper continues
efforts in the investigation of thermal-clastic
buckling responses to complete the clectro-
thermal-elastic  characterization of microma-
chined beams.

The problem of buckling has been investigated
for many years; most previous efforts have been
concentrated on large deflection of statically
determined beams [8-10], or the Elastica

270

problem coupled with non-linear constitutive
equations [11,12]. In this paper, buckling was
the result of electrical heating and thermal
stresses instead of pure forces. This thermal-
elastic problem is investigated in this paper by
the coupled problem of Elastica [13, 14] and the
Duhamel-Neumann law (e.g. [15]).

2. Theoretical analysis

2.1. Electro-thermal modeling

From previous works [7], the average tempera-
ture of a lineshape suspended micro beam under
an input current is derived as:

tanh (v/&5)
\/"L
where T, and ¢ are functions of the applied

current, geometry, thermal properties and the
excessive heat flux shape factor [7].

ng - Tr - (7r - Tx) (])

2.2. Problem of Elastica

As illustrated in Fig. 1, when a clamped-
clamped beam is subjected to a temperature
rise, two thermal loads, P, are assumed to have
the same magnitude but with opposite direc-
tions at both ends of the beam. The relation
between the thermal load and deflection angles
along the axial axis can be derived by the clas-
sical problem of Elastica [13,14]. However,
unlike statically determined problems (such as
cantilevers) which have been studied and
solved previously [8, 9, 16], our case is a stati-
cally indeterminate one. Special procedures

Fig. 1. The schematic diagram of a buckled beam under
thermal loads.
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dy

Fig. 2. Free body diagram of a deflected beam.

have to be taken before this problem can be
solved. Theorctically, the shape of the beam
after buckling 1s symmetrical such that only
one-quarter of the beam 1is analyzed. The
governing equation for the load and deflection
relation 1s derived from the moment—curvature
diagram illustrated in Fig. 2, where 0 denotes
the deflection angle with respect to the original
horizontal direction, x, of the beam. The
moment—curvature relation is derived as:

d0  —Py—M,
ds  EI

in which s 1s the coordinate along the deflected
beam, M, is an unknown reaction moment at
the clamped edge, y is the deflection, and E
and I are the Young’s modulus and moment of
inertia of the beam, respectively. The coordi-
nates x, y, s and @ have the following relations:

©)

dy .

= sin (3)
dx

3 = cos 0 (4

Further differentiating eq. (2) with respect to s
results 1 the governing equation of the
Elastica problem:

~

dae pr

There are four boundary conditions:

9L=’-T' = anax (6)

0., =0 (7)

dé

*dz (:L_,: 0 (8)
T4

d6 _A/In

ds|_,  EI ®)

where 0,,,, 1s the maximum deflection angle at
the point of one-quarter length of the beam. L’
is the total length of the deformed beam and its
magnitude can be derived by rearranging and
mtegrating eq. (5) twice. The term is then
solved by using the boundary conditions of eq.
(6) and eq. (8) [17].
4

L= —=K(p) (10)

LI

: Om'lx
p= sin—— (1
where K(ff) is the complete elliptic integral of
the first kind. The original length, L, is the
integration over x and can also be represented
as a function of @, [17]:

L— \%(25(/3) K (p)) (12)

El
where E(f) is the complete elliptic integral of
the second kind.

2.3. Analytic solutions

[n order to determine the shape of deflected
beams under a thermal load, P, two cases are
considered: the infinitesimal deflection and
finite deflection. When the deflection is infini-
tesimal, 6 is close to zero.

1im()4,()J'dS = L — L’ (13)
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limy_ K (f) = (14)

NI

By substituting eqgs. (13) and (14) into eq. (10),
the buckling load P, is derived as:
_4n’El

=73

This relation is identical to the result derived

from the theorem of Euler buckling of columns

(18, 14].

P (15)

If the deflection is not infinitesimal, the finite
deflection can be formulated as:

1
Jd)’:@;

Owing to the symmetry and antisymmetry of
the deflection shape, the integration can be sep-
arated into two parts:

o .
J sin @ dé@ (16)

o Evcosth —cos b,

L
o) <x<— (17)
4
1 J" sin 6 do
r= \/ip “\,C050—C050max
El

\@

(1 = cos¢)

-IA!(“

L

2

J‘ sin 6 df
Vecost — cos b,

'*-J||‘\)

N [” —sin #df
Jo,. Vcosfl —cosf ..

4

= (1 +cos¢)

El
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where

[0

¢ = sin”! <5‘~%—2> (19)

The maximum deflection occurs at the middle
of the beam.

4
Ymax = _li (20)
&
It 1s observed that y,,, is a function of the
thermal load, P, and the maximum deflection
angle 0,,,,..

2.4. Thermal-elastic modeling
The Duhamel-Neumann law is used for the
thermal-elastic analysis [15].

Ty = Ak + 2uey — By(T — Ty) (21)

where T is the average temperature of the beam,
Ty 1s a reference temperature, t;; are the stress
components, 4 and u are the Lame constants, ¢;
are the strain components, and B; are the
numerical constants in deriving the Duhamel-
Neumann law. Polysilicon is treated as an
1sotropic material and

oFE
Bj=6;B=0;——— T2 (22)
where v is the Poisson’s ratio and « is the thermal
expansion coefficient. Furthermore, since only
the axial direction is under thermal loads, the
stresses in the other two directions are consid-
ered as released. The Duhamel-Neumann law
can be simplified to a one-dimensional problem:

T=FEeg— aE(T - T()) (23)
where E is the Young’s modulus and
P 24
=2 24
L'—L
£=—— (25)
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If the deflected length L' is replaced by 0, and
other material properties in eq. (10), the
temperature—load relation can be derived as:

4K (B)EAVPEI — PLEA — P°L

r= PLEAx

+ Ty

(26)

Substituting eq. (20) into eq. (23), the tempera-
ture—maximum deflection relation can be
derived:

I
[—e+a(T — Ty)lA

Yimax = 4ﬁ (27)

The electro-thermal-elastic problem can then
be solved by substituting eq. (1) into eq. (27);
the relation between applied current and the
consequent maximum deflection can be
derived as:

Ymax

1

— 48

(28)
This is the analytical electro-thermal-elastic

equation for the suspended micro beams.

3. Numerical solutions and discussion

In the above analysis, theoretical electro-
thermal-elastic behavior of clamped—clamped

TABLE 1 Thermal-elastic parameters

[—8+a(T (T, — To)“—"h\/(—.‘/_h) T(,)]A

beams has been established. Computer simula-
tion is used to obtain the complete solutions.
It 1s observed that under a specified tempera-
ture during the thermal post-buckling stage,
there 1s a unique solution of 6., and P for
both eq. (12) and eq. (26). Because of the
non-linear nature of eq. (26), it is easier to
spectfy 0,5 and seek the corresponding T, P
and other parameters. A micro beam with
width of 2 um, thickness of 2.2 um and length
of 100 um was used as the simulation sample
and the results are listed in Table 1. It is
observed that before thermal buckling, 0, is
zero. The beam will buckle if the average
temperature of the beam is over than 531°C.
Since the thickness of the beam is larger than
the width, buckling in the lateral direction
instead of the vertical direction will occur.
The thermal load scems to decrease when the
temperature continues to rise as observed in
Table 1. This behavior may come from the
fact that shape changes of the beam have
partially released the thermal stresses. The
trend continues as temperature increases until
the melting point of the beam is reached.

The shape of the clamped—clamped beam
after thermal buckling is one of the most
important things to be characterized. This
shape can be solved if either 0., P or T is
specified. Figure 3 shows calculation results
of two buckled beams at different average
temperatures of 900 and 1200°C, respectively.
It is noted that the wvertical scale is much
smaller than the horizontal scale shown in

Bmax (deg) pip, £

Yrax (M) Temperature (°C)

0.000000
1.000000
2.000000
3.000000
4.000000
5.000000
5.800000

1.000000e+00
9.998858¢—-01
9.995432c¢—01
9.989722e—-01
9.981732¢-01
9.971464e—-01
9.961612e—01

(.000000e-00
7.615894¢—05
3.046909¢ -0+
6.857613¢~04
1.219646¢—-03
1.906733¢—03
2.567038¢ 03

0.000000e+00

5.555802¢—-07
1.111309¢—06
1.667333¢—06
2.223803e¢—06
2.780867¢—06
3.227047¢-006

531133602
5.603676e-02
6.480911e+02
7.943677¢+02
9.993036¢+02
1.263048¢+03
1.516513¢+03
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Fig. 3. Deflected shapes of a 100 pm long micro beam under difterent temperatures.

Fig. 4. An optical microphotograph of a suspended beam in the thermal post-buckling stage under a 6 mA input current.

Fig. 3 and the maximum lateral deflection i1s
about 2.7 um at the center of the beam when
the average temperature reaches 900°C.
Figure 4 shows the experimental result of a
micromachined beam under a 6 mA input
current in the thermal post-buckling stage.
This microphotograph was taken under an
optical microscope which is attached to a
probe station. It is observed that the simula-
tion results are consistent with the cxper-
imental observations.

In order to calculate the thermal loads with

respect to different input currents, pre-buckling
and post-buckling states are analyzed separately.
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Before buckling, the strain is zero and the
magnitudes of thermal loads under different
temperatures can be derived by using eq. (23).
In the post-buckling stage, eq. (26) is used to
derive the load-temperature relation.

The electro-thermal-elastic relation can then be
found by using eq. (28) as shown in Fig. 5. It is
observed that there 1s no deflection before the
input current is high enough to cause buckling.
After the beam is buckled, the maximum deflec-
tion increases as the input current increases. The
highest deflection can be achieved before
melting of polysilicon 1s 3.11 um under a
7.40 mA 1nput current.
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Fig. 5. Simulation results of maximum deflections under
different input currents.

4. Conclusion

By solving the coupled problems of Elastica
and the Duhamel-Neumann law, a complete
solution for clamped—clamped elastic beams
under thermal post-buckling is established.
The thermal-elastic analysis when combined
with the electro-thermal analysis which has
been developed previously completes  the
analytical model for eclectro-thermal-elastic
responses of suspended micro beams. It is
found that a micro beam with width 2 um,
thickness 2.2 um and length 100 pm will have
a lateral deflection of 2.7 um at the middle of
the beam when an input current of 6 mA i1s
applied. Thermally driven miniaturized actu-
ators  which utlize electro-thermal post-
buckling behavior could take advantage of the
clectro-thermal-elastic characterizations devel-
oped in this paper.
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