University of California at Berkeley College of Engineering Department of Mechanical Engineering

ME102B, Fall 2018

Liwei Lin

Problem Set #1

Due October 1 (Monday)

Problem 1 (Power screws)

A single-square-threaded 25-mm (major diameter) power screw is 25 mm in diameter with a pitch of 5 mm. A vertical load on the screw reaches a maximum of 6kN. The coefficients of friction are 0.05 for collar and 0.08 for the threads. The frictional diameter of the collar is 40 mm. Find the overall efficiency and the torque to "raise" and "lower" the load.

Problem 2 (load factor)

The figure illustrates the connection of a cylinder head to a pressure vessel using 10 bolts and a confined-gasket seal. The effective sealing diameter is 100 mm. Other dimensions are: A = 100, B = 200, C = 300, D = 20, and E = 25, all in millimeters. The cylinder is used to store gas at a static pressure of 6 MPa. ISO 8.8 bolts, coarse-pitch, with a diameter of 12 mm have been selected. This provides acceptable bolt spacing for reused connections. What load factors of yielding and separation result from this selection? The joint constant has been calculated as 0.24. (hint: you will need to find the bolt information from Table 8-1 and 8-11)

Property Class	Size Range, Inclusive	Minimum Proof Strength,† MPa	Minimum Tensile Strength,† MPa	Minimum Yield Strength, [†] MPa	Material	Head Marking
4.6	M5-M36	225	400	240	Low or medium carbon	4.6
4.8	M1.6-M16	310	420	340	Low or medium carbon	4.8
5.8	M5-M24	380	520	420	Low or medium carbon	5.8
8.8	M16-M36	600	830	660	Medium carbon, Q&T	
9.8	M1.6-M16	650	900	720	Medium carbon, Q&T	(1)
10.9	M5-M36	830	1040	940	Low-carbon martensite, Q&T	10.9

Diameters and Areas of Coarse Pitch and Fine Pitch Metric Threads (All Dimensions in Millimeters)*

	C	arse-Pitch	Series	Fine-Pitch Series		
Nominal Major Diameter d	Pitch	Tensile- Stress Area A,	Minor- Diameter Area A,	Pitch P	Tensile- Stress Area A,	Minor- Diameter Area A,
1.6	0.35	1.27	1.07			
2	0.40	2.07	1.79			
2.5	0.45	3.39	2.98			
3	0.5	5.03	4.47			
3.5	0.6	6.78	6.00			
4	0.7	8.78	7.75			
5	0.8	14.2	12.7			
6	1	20.1	17.9			010
8	1.25	36.6	32.8	1	39.2	36.0
10	1.5	58.0	52.3	1.25	61.2	56.3
12	1.75	84.3	76.3	1.25	92.1	86.0
14	2	115	104	1.5	125	116
16	2	157	144	1.5	167	157
20	2.5	245	225	1.5	272	259
24	3	353	324	2	384	365
30	3.5	561	519	2	621	596
36	4	817	759	2	915	884
42	4.5	1120	1050	2	1260	1230
48	5	1470	1380	2	1670	1630
56	5.5	2030	1910	2	2300	2250
64	6	2680	2520	2	3030	2980
72	6	3460	3280	2	3860	3800
80	6	4340	4140	1.5	4850	4800
90	6	5590	5360	2	6100	6020
100	6	6990	6740	2	7560	7470
110	U			2	9180	9080

The equations and data used to develop this table have been obtained from ANSI 81 \pm 1974 and 818 3 \pm 1978. The minor diameter w=1 from the equation $d_1=d-1.226$ 869 p_1 and the patch diameter from $d_2=d-0.649$ 519 p_1 . The mean of the patch diameter and the confidence was used to compute the tensile-stress orea.

Square and Acme threads, shown in Fig. 8–3a and b, respectively, are now screws when power is to be transmitted. Table 8–3 lists the preferred pitches for series Acme threads. However, other pitches can be and often are used, since the for a standard for such threads is not great.

Modifications are frequently made to both Acme and square threads. For interesting the square thread is sometimes modified by cutting the space between the feeth shave an included thread angle of 10 to 15. This is not difficult, since these three usually cut with a single-point tool anyhow; the modification retains most of the efficiency inherent in square threads and makes the cutting simpler. Acme states