University of California at Berkeley
 College of Engineering Department of Mechanical Engineering

ME102B, Fall 2018

Liwei Lin

Problem Set \#1

Due October 1 (Monday)

Problem 1 (Power screws)

A single-square-threaded $25-\mathrm{mm}$ (major diameter) power screw is 25 mm in diameter with a pitch of 5 mm . A vertical load on the screw reaches a maximum of 6 kN . The coefficients of friction are 0.05 for collar and 0.08 for the threads. The frictional diameter of the collar is 40 mm . Find the overall efficiency and the torque to "raise" and "lower" the load.

Problem 2 (load factor)

The figure illustrates the connection of a cylinder head to a pressure vessel using 10 bolts and a confined-gasket seal. The effective sealing diameter is 100 mm . Other dimensions are: $\mathrm{A}=100$, $B=200, C=300, D=20$, and $E=25$, all in millimeters. The cylinder is used to store gas at a static pressure of 6 MPa . ISO 8.8 bolts, coarse-pitch, with a diameter of 12 mm have been selected. This provides acceptable bolt spacing for reused connections. What load factors of yielding and separation result from this selection? The joint constant has been calculated as 0.24 . (hint: you will need to find the bolt information from Table 8-1 and 8-11)

| Table 8-1 1

Property Class	Size Range, Inclusive	Minimum Proof Strength, ${ }^{\dagger}$ MPa	Minimum Tensile Strength, ${ }^{\dagger}$ MPa	Minimum Yield Strength, ${ }^{\dagger}$ MPa	Material	Head Marking
4.6	M5-M36	225	400	240	Low or medium carbon	
4.8	M1.6-M16	310	420	340	Low or medium carbon	
5.8	M5-M24	380	520	420	Low or medium carbon	
8.8	M16-M36	600	830	660	Medium carbon, Q\&T	
9.8	M1.6-M16	650	900	720	Medium carbon, Q\&T	
10.9	M5-M36	830	1040	940	Low-carbon martensite,	
					Q\&T	

Table 8-1
Diameters and Arass of
Conse Ph hand fine
Piech Metre Theats
(Al) Ditrentsins is
Millimetos)*

Nominal Maior Diamerer d	Coarse-Pitch Series			Fine-Pitch Series		
	Pitch P	Tensile- Stress Area A,	MinorDiameter Area A,	Pitch P	Tensile- Stress Area A,	Minor- Diameter Area A,
1.6	0.35	1.27	1.07			
2	0.40	207	1.79			
2.5	0.45	339	2.98			
3	0.5	503	447			
3.5	0.6	6.78	6.00			
4	07	8.78	775			
5	0.8	14.2	12.7			
6	1	20.1	17.9			
8	125	36.6	32.8	1	39.2	36.0
10	1.5	58.0	52.3	1.25	61.2	563
12	1.75	843	76.3	125	92.1	860
14	2	115	104	15	125	116 157
16	2	157	144	1.5	167	157
20	25	245	225	1.5	272	259
24	3	353	324	2	384	365
30	3.5	. 561	519	2	621	596
36	4	- 817	759	2	915	884
42	45	1120	1050	2	1260	1230
48	5	1470	1380	2	1670	1630
56	5.5	2030	1910	2	2300	2250
64	6	2680	2520	2	3030	2980
72	6	3460	3280	2	3860	3800
80	6	4340	4140	1.5	4850	$48(0)$
90	6	5590	5360	2	6100	6070
100	6	6990	6740	2	7560	74/0
110				2	9180	9040
Syaare and Acme thread, Jown in Fig. $x \quad 3 a$ and b, respectively, an serew when power is to be rrammitied. Table X blist the prefered pitche series Acme threak. However, ohber pitches can be and oflen are used. whe for a standard for such threads is mot great. Medifications are frequently mate wo te th Aeme and square threads. I in mat the suare thread is sometimes mudified by euting the space between the to th tel have an inctuted thread angle of 10 to 15 . This is not diflicult. since these thed usually cut with a single-point tool any how: the moditication retains mont ..t the efficiency inherent in square thread and make the cuting smpler. Actir the efof						

