University of California at Berkeley College of Engineering Department of Mechanical Engineering

ME102B, Fall 2018

Liwei Lin

Problem Set #2

Due October 10 (Wednesday)

Problem 1 (fatigue loading)

The figure shows a fluid-pressure linear actuator (hydraulic cylinder) in which D = 4, t = 3/8, L = 12 and $w = \frac{3}{4}$, all in inches. Both brackets as well as the cylinder are of steel. The actuator has been designed for a working pressure of 0 to 2000 psi. Six 3/8-inch SAE grade 5 coarse-thread bolts are used, tightened to 75 percent of proof load. The endurance limit for SAE grade 5 and 3/8 inch bolt is 18.6 kpsi. The joint constant has been calculated as 0.1. (hint: you will need to find the bolt information from Table 8-2 and 8-9)

- (a) Using the Goodman criterion, find the factor of safety guarding against a fatigue failure?
- (b) What pressure would be required to cause total join separation?

Problem 2 (Eccentric Loading)

Find the shear load on each of the three bolts for the connection shown in the figure.

		Coarse Series—UNC					
Size Designation	Nominal Major Diameter in	Threads per Inch N	Tensile- Stress Area A, in ²	Minor- Diameter Area A, in ²	Fi Threads per Inch N	ne Series—L Tensile- Stress Area A, in ²	JNF Minor- Diameter Area A, in ²
0	0.0600			Samada	80	0.001 80	
1	0.0730	64	0.002 63	0.002 18	72	0.001 80	0.001 51
2	0.0860	56	0.003 70	0.003 10	64	0.00278	0.002 37
3	0.0990	48	0.004 87	0.004 06	56	0.005 23	0.003 39
4	0.1120	40	0.006 04	0.004 96	48	0.005 25	
5	0.1250	40	0.007 96	0.006 72	40	0.008 80	0.005 66
6	0.1380	32	0.009 09	0.007 45	44	0.008 80	0.007 16
8	0.1640	32	0.0140	0.011 96	36	0.010 13	0.00874
10	0.1900	24	0.017 5	0.014 50	32	0.020 0	0.012 03
12	0.2160	24	0.024 2	0.020 6	28	0.020 0	0.017 5
1	0.2500	20	0.031 8	0.026 9	28	0.025 8	0.022 8
14 5 16	0.3125	18	0.052 4	0.045 4	24	0.058 0	0.052 0
38	0.3750	16	0.077 5	0.067 8	24	0.087 8	0.080 9
7 16	0.4375	14	0.106 3	0.093 3	20	0.118 7	0.109 0
	0.5000	13	0.141 9	0.1257	20	0.1599	0.148 6
- 2 9 16	0.5625	12	0.182	0.162	18	0.203	0.189
5	0.6250	11	0.226	0.202	18	0.256	0.240
3	0.7500	10	0.334	0.302	16	0.373	0.351
4 7	0.8750	9	0.462	0.419	14	0.509	0.480
1	1.0000	8	0.606	0.551	12	0.663	0.625
11	1.2500	7	0.969	0.890	12	1.073	1.024
$1\frac{1}{4}$ $1\frac{1}{2}$	1.5000	6	1.405	1.294	12	1.581	1.521

This table was compiled from ANSI 81.1-1974. The minor diameter was found from the equation $d_i = d - 1.299\,038p$, and the pitch diameter from $d_m = d - 0.649\,519p$. The mean of the pitch daneter and the minor diameter was used to compute the tensile-stress area.

418 Mechanical Engineering Design

Table 8-9

SAE Specifications for Steel Bolts

SAE Grade No.	Size Range Inclusive, in	Minimum Proof Strength,* kpsi	Minimum Tensile Strength,* kpsi	Minimum Yield Strength,* kpsi	Material	Head Marki
1	$\frac{1}{4} - 1\frac{1}{2}$	33	60	36	Low or medium carbon	0
2	1-3	55	74	57	Low or medium carbon	Ň
	$\frac{7}{8} - 1\frac{1}{2}$	33	60	36		Q
4	$\frac{1}{4} - 1\frac{1}{2}$	65	115	100	Medium carbon, cold-drawn	0
5	1 <u>4</u> -1	85	120	92	Medium carbon, Q&T	Ň
	$1\frac{1}{8} - 1\frac{1}{2}$	74	105	81		S
5.2	1 <u>4</u> -1	85	120	92	Low-carbon martensite, Q&T	0
7	$\frac{1}{4} - 1\frac{1}{2}$	105	133	115	Medium-carbon alloy, Q&T	ě
8	$\frac{1}{4} - 1\frac{1}{2}$	120	150	130	Medium-carbon alloy, Q&T	6
8.2	1 <u>4</u> -1	120	150	130	Low-carbon martensite, Q&T	

*Minimum strengths are strengths exceeded by 99 percent of fusteners.

ASTM specifications are listed in Table 8–10. ASTM threads are shorter because ASTM deals mostly with structures; structural connections are generally loaded in shear, and the decreased thread length provides more shank area.

Specifications for metric fasteners are given in Table 8-11.

It is worth noting that all specification-grade bolts made in this country bear a manufacturer's mark or logo, in addition to the grade marking, on the bolt head. Such marks confirm that the bolt meets or exceeds specifications. If such marks are missing, the bolt may be imported; for imported bolts there is no obligation to meet specifications.

Bolts in fatigue axial loading fail at the fillet under the head, at the thread runout, and at the first thread engaged in the nut. If the bolt has a standard shoulder under the