University of California at Berkeley College of Engineering Department of Mechanical Engineering

ME102B, Fall 2018

Liwei Lin

Problem Set \#2

Due October 10 (Wednesday)

Problem 1 (fatigue loading)

The figure shows a fluid-pressure linear actuator (hydraulic cylinder) in which $\mathrm{D}=4, \mathrm{t}=3 / 8, \mathrm{~L}=$ 12 and $w=3 / 4$, all in inches. Both brackets as well as the cylinder are of steel. The actuator has been designed for a working pressure of 0 to 2000 psi. Six $3 / 8$-inch SAE grade 5 coarse-thread bolts are used, tightened to 75 percent of proof load. The endurance limit for SAE grade 5 and $3 / 8$ inch bolt is 18.6 kpsi . The joint constant has been calculated as 0.1 . (hint: you will need to find the bolt information from Table 8-2 and 8-9)
(a) Using the Goodman criterion, find the factor of safety guarding against a fatigue failure?
(b) What pressure would be required to cause total join separation?

Problem 2 (Eccentric Loading)
Find the shear load on each of the three bolts for the connection shown in the figure.

Toble 8-2							
Size Designation	Nominal Major Diameter in	Coarse Series-UNC			Fine Series-UNF		
			Tensile-				
		Threads per Inch N	Stress Area A, $i n^{2}$	Minor- Diameter Area A_{r} $i n^{2}$	Threads per Inch N	Tensile. Stress Area A, in^{2}	MinorDiameter Area $\boldsymbol{A}_{\text {r }}$ $i n^{2}$
0	0.0600						
1	0.0730	64	0.00263	0.00218	80 72	0.00180	0.00151
2	0.0860	56	0.00370	0.00310	72	0.00278	0.00237
3	0.0990	48	0.00487	0.00406	64	0.00394	0.00339
4	0.1120	40	0.00604	0.00496		0.005	0.00451
5	0.1250	40	0.00796	. 00	48	0.00661	0.00566
6	0.1380	32	0.00909	0.007	40	0.00880	0.00716
8	0.1640	32	0.0140	0.01196	40	0.01015	0.00874
10	0.1900	24	0.0175	0.01450	32		0.0175
12	0.2160	24	0.0242	0.0206	28	0.0258	0.0226
$\frac{1}{4}$	0.2500	20	0.0318	0.0269	28	0.0364	0.0326
$\frac{5}{16}$	0.3125	18	0.0524	0.0454	24	0.0580	0.0524
$\frac{3}{8}$	0.3750	16	0.0775	0.0678	24	0.0878	0.0809
$\frac{7}{16}$	0.4375	14	0.1063	0.0933	20	0.1187	0.1090
$\frac{1}{5}$	0.5000	13	0.1419	0.1257	20	0.1599	0.1486
$\frac{9}{18}$	0.5625	12	0.182	0.162	18	0.203	0.189
$\frac{5}{8}$	0.6250	11	0.226	0.202	18	0.256	0.240
$\frac{3}{4}$	0.7500	10	0.334	0.302	16	0.373	0.351
$\frac{7}{8}$	0.8750	9	0.462	0.419	14	0.509	0.480
1	1.0000	8	0.606	0.551	12	0.663	0.625
$1 \frac{1}{1}$	1.2500	7	0.969	0.890	12	1.073	1.024
$1 \frac{1}{7}$	1.5000	6	1.405	1.294	12	1.581	1.521

 freezadite nina dieneer ws ussod to conpute he ensilestess crea.

Figure 8-3
(d) Square hreod; (b) Acme itreod.

Table 8-9
SAE Specifications for Steel Bolts

SAE Grade No.	Size Range Inclusive, in	Minimum Proof Strength, kpsi	Minimum Tensile Strength," kpsi	Minimum Yield Strength, kpsi	Material	Head Marking
1	$\frac{1}{4}-1 \frac{1}{2}$	33	60	36	Low or medium corbon	
2	$\frac{1}{4}-\frac{3}{4}$	55	74	57	Low or medium corbon	
	$\frac{7}{8}-1 \frac{1}{2}$	33	60	36		
4	$\frac{1}{4}-1 \frac{1}{2}$	65	115	100	Medium carbon, cold-drawn	
5	$\frac{1}{4}-1$	85	120	92	Medium carbon, Q\&T	
	$1 \frac{1}{8}-1 \frac{1}{2}$	74	105	81		
5.2	$\frac{1}{4}-1$	85	120	92	Low-carbon martensite, Q\&T	
7	$\frac{1}{4}-1 \frac{1}{2}$	105	133	115	Medium-carbon alloy, Q\&T	
8	$\frac{1}{4}-1 \frac{1}{2}$	120	150	130	Medium-carbon alloy, Q\&T	
8.2	$\frac{1}{4}-1$	120	150	130	Low-carbon martensite, Q\&T	

'Winum strengts are stengts exceoded by 99 peccent of fostener.

ASTM specifications are listed in Table 8-10. ASTM threads are shorter because ASTM deals mostly with structures; structural connections are generally loaded in shear, and the decreased thread length provides more shank area.

Specifications for metric fasteners are given in Table 8-11.
It is worth noting that all specification-grade bolts made in this country bear a manufacturer's mark or logo, in addition to the grade marking, on the bolt head. Such marks confirm that the bolt meets or exceeds specifications. If such marks are missing, the bolt may be imported; for imported bolts there is no obligation to meet specifications.

Bolts in fatigue axial loading fail at the fillet under the head, at the thread runout and at the first thread engaged in the nut. If the bolt has a standard shoulder under the

