
Introduction to Finite Element Modeling 

Engineering analysis of mechanical systems have been addressed by deriving differential 
equations relating the variables of through basic physical principles such as equilibrium, 
conservation of energy, conservation of mass, the laws of thermodynamics, Maxwell's 
equations and Newton's laws of motion. However, once formulated, solving the resulting 
mathematical models is often impossible, especially when the resulting models are non-
linear partial differential equations. Only very simple problems of regular geometry such 
as a rectangular of a circle with the simplest boundary conditions were tractable. 

The finite element method (FEM) is the dominant discretization technique in structural 
mechanics. The basic concept in the physical interpretation of the FEM is the subdivision 
of the mathematical model into disjoint (non-overlapping) components of simple 
geometry called finite elements or elements for short. The response of each element is 
expressed in terms of a finite number of degrees of freedom characterized as the value of 
an unknown function, or functions, at a set of nodal points. 

The response of the mathematical model is then considered to be approximated by that of 
the discrete model obtained by connecting or assembling the collection of all elements. 
The disconnection-assembly concept occurs naturally when examining many artificial 
and natural systems. For example, it is easy to visualize an engine, bridge, building, 
airplane, or skeleton as fabricated from simpler components. Unlike finite difference 
models, finite elements do not overlap in space. 

Objectives of FEM in this Course 

• Understand the fundamental ideas of the FEM 
• Know the behavior and usage of each type of elements covered in this course 
• Be able to prepare a suitable FE model for structural mechanical analysis 

problems 
• Can interpret and evaluate the quality of the results (know the physics of the 

problems) 
• Be aware of the limitations of the FEM (don't misuse the FEM - a numerical tool) 

Finite Element Analysis 

A typical finite element analysis on a software system requires the following information: 

1. Nodal point spatial locations (geometry) 
2. Elements connecting the nodal points 
3. Mass properties 
4. Boundary conditions or restraints 
5. Loading or forcing function details 
6. Analysis options 



Because FEM is a discretization method, the number of degrees of freedom of a FEM 
model is necessarily finite. They are collected in a column vector called u. This vector is 
generally called the DOF vector or state vector. The term nodal displacement vector for u 
is reserved to mechanical applications. 

FEM Solution Process 

Procedures  

1. Divide structure into pieces (elements with nodes) (discretization/meshing) 
2. Connect (assemble) the elements at the nodes to form an approximate system of 

equations for the whole structure (forming element matrices) 
3. Solve the system of equations involving unknown quantities at the nodes (e.g., 

displacements) 
4. Calculate desired quantities (e.g., strains and stresses) at selected elements 

Basic Theory 

The way finite element analysis obtains the temperatures, stresses, flows, or other desired 
unknown parameters in the finite element model are by minimizing an energy functional. 
An energy functional consists of all the energies associated with the particular finite 
element model. Based on the law of conservation of energy, the finite element energy 
functional must equal zero. 

The finite element method obtains the correct solution for any finite element model by 
minimizing the energy functional. The minimum of the functional is found by setting the 
derivative of the functional with respect to the unknown grid point potential for zero. 

Thus, the basic equation for finite element analysis is 0=
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where F is the energy functional and p is the unknown grid point potential (In mechanics, 
the potential is displacement.) to be calculated. This is based on the principle of virtual 
work, which states that if a particle is under equilibrium, under a set of a system of 
forces, then for any displacement, the virtual work is zero. Each finite element will have 
its own unique energy functional. 

As an example, in stress analysis, the governing equations for a continuous rigid body 
can be obtained by minimizing the total potential energy of the system. The total 

potential energy Π can be expressed as: ∫ ∫ ∫
Ω Ω Γ
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 where σ 

and ε are the vectors of the stress and strain components at any point, respectively, d is 
the vector of displacement at any point, b is the vector of body force components per unit 
volume, and q is the vector of applied surface traction components at any surface point. 
The volume and surface integrals are defined over the entire region of the structure Ω and 
that part of its boundary subject to load Γ. The first term on the right hand side of this 



equation represents the internal strain energy and the second and third terms are, 
respectively, the potential energy contributions of the body force loads and distributed 
surface loads. 

In the finite element displacement method, the displacement is assumed to have unknown 
values only at the nodal points, so that the variation within the element is described in 
terms of the nodal values by means of interpolation functions. Thus, within any one 
element, d = N u where N is the matrix of interpolation functions termed shape functions 
and u is the vector of unknown nodal displacements. (u is equivalent to p in the basic 
equation for finite element analysis.) The strains within the element can be expressed in 
terms of the element nodal displacements as ε = B u where B is the strain displacement 
matrix. Finally, the stresses may be related to the strains by use of an elasticity matrix 
(e.g., Young’s modulus) as σ = E ε. 

The total potential energy of the discretized structure will be the sum of the energy 
contributions of each individual element. Thus, ∑Π=Π

e
e  where Πe represents the total 

potential energy of an individual element. 
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Taking the derivative ( )∫ ∫ ∫
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 one gets the 

element equilibrium equation k u – f = 0 where ∫ ∫
Ω Γ
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TT  and k is known as the element stiffness matrix. 

The physical significance of the vectors u and f varies according to the application being 
modeled. 

Application Problem State (DOF) vector d 
represents 

Forcing vector f 
represents 

Structures and solid 
mechanics Displacement Mechanical force 

Heat conduction Temperature Heat flux 
Acoustic fluid Displacement potential Particle velocity 

Potential flows Pressure Particle velocity 
General flows Velocity Fluxes 
Electrostatics Electric potential Charge density 
Magnetostatics Magneticpotential Magnetic intensity 



Discretization 

• Meshing  

Coarse: Faster computation; not concerned about stress concentrations, 
singularities, or warping. Not near changes in geometry or displacement 
constraints or changes in material including thickness. 
Fine: Best approximation but at the cost of the computation time. 
Look for disproportionate stress level changes from node to node or plate to plate 
and large adjacent node displacement differences to determine if need to refine 
the mesh. 
Nodes should be defined at locations where changes of geometry or loading 
occur. Changes in geometry relate to thickness, material and/or curvature. 
A simple check, if you can, is to decrease the mesh size by 50%, re-run analysis, 
and compare the change of magnitude of stresses and strains. If there is no 
significant change, then ok. 
In most companies, all of this knowledge of mesh size will be known and might 
be set a FEA control file. 

• Degrees of Freedom  

Constrain structure to prevent rigid body motion 
Restrict motion in non-desireable directions 

• Applied Forces  

Static 
Static distributed 
Transient 
Harmonic vibratory 

• Element Types  

Dictated by features of FEA software 
1-D to 3-D 
Pure stress, stress + bending, thermal, fluid 
Triangular Element 
model transitions between find and coarse grids 
Irregular structures 
Warped surfaces 
Quadrilaterial element 
Should lie on an exact plane; else moment on the membrane is produced. 
3-D two-node truss 
3 DOF, no bending loads 
Stress constant over entire element 
Typically used in two-force members ("RBAR") 



3-D two-node beam 
specify moments of inertia in both local X and local Y 
6 DOF Mx My Mz 
A typical beam 
3-D 4-node plate 
Modeling of structures where bending (out of plane) and/or membrane (in-plane) 
stress play equally important roles in the behavior of that particular structure 
Each node has 6 DOF 
Must specify plate thickness 
2-D (3)4-node solid 
"isoparametric four-node solid" 
Common in 2-D stress problems and natural frequency analysis for solid 
structure. 
"Thin" in that stress magnitude in third direction is considered constant over the 
element thickness. 
2 translational DOF and no rotational DOF 
2-D 2-node truss 
No bending loads 
uniaxial tension-compression 
Straight bar with uniform properties from end to end 
2 DOF, no rotation 
2-D 2-node beam 
3 DOF - translation x, y and rotation about z 
Any cross section for which moment of inertia can be computed 


